
Symmetric cryptography --------------------- Asymmetric cryptography 1976

Symmetric encryption:
 block ciphers
 stream ciphers
H-functions, Message digest
HMAC H-Message Authentication Code

Asymmetric encryption
E-signature - Public Key Infrastructure - PKI
E-money
E-voting
Digital Rights Management - DRM (Marlin)
Etc.

Cryptography: information
confidentiality, integrity, authenticity, person identification

Symmetric - Secret Key Encryption - Decryption

Open
Communication

Channel

k k

k

Diffie-Hellman Key Agreement Protocol (DH KAP)

Public Parameters PP=(p,g)

Asymmetric encryption: allows to encrypt restricted length of message |m|<2048 bits

`111_008_SymmetricEncryption_CBC-CTR

 `111_008 SymmetricEncryption CBC CTR Page 1

Vernam cipher (1917) - One Time Pad

Logical operations

Symmetric ciphers

Block Ciphers Stream Ciphers

 `111_008 SymmetricEncryption CBC CTR Page 2

Stream Cipher - Vernam Cipher - One-Time Pad

Pseudo Random Numbers Generators - PRNG: FIPS-142-2

 `111_008 SymmetricEncryption CBC CTR Page 3

Vernam cipher: Plaintext m --> Encryption Ek(m)=c --> Ciphertext c.

For general encryption and decryption bitwise XOR operation ⊕ is used for bitstrings.
Plaintext m and key K (bit stream equal to m bit stream)are transformed to binary form consisting of bitstrings.

Encryption: c = m ⊕ K.

Decryption: m = c ⊕ K = m ⊕ K ⊕ K = m ⊕ 0 = m.

Security requirements.
1.Key K must be generated at random using (Pseudo)Random Number Generators - PRNG.
2.Key K bit length must be no less than plaintext bit length: |K|>=|m|.
3.Key K can be used only once.

Attention! If the same agreed secret key K is used twice in Vernam cipher for any two
messages m1 and m2 encryption, then eavesdropping adversary can obtain data db which is
equal to bitwise XOR between m1 and m2. Let ciphertexts c1 and c2 are obtained by the
following encryption with the same symmetric key K

c1 = m1 ⊕ K,

c2 = m2 ⊕ K,

where ⊕ is bitwise XOR operation.
Then eavesdropping adversary computes the following data db

db = c1 ⊕ c2 = m1 ⊕ K ⊕ m2 ⊕ K = m1 ⊕ m2 ⊕ K ⊕ K = m1 ⊕ m2 ⊕ 0 = m1 ⊕ m2.
It is reckoned as a crucial insecurity since cryptanalysis of data db is significantly facilitated
and both m1 and m2 can be disclosed.
Moreover, if any message of two m1 or m2 are revealed by some circumstances, say message
m2, then the other message m1 becomes clear to the adversary by computing

 db ⊕ m2 = m1 ⊕ m2 ⊕ m2 = m1 ⊕ 0 = m1.
Never use the same secret key K twice in Vernam cipher!
The same secret key k can be used multiple times in standardized block ciphers (AES) and
stream ciphers.

>> kAB = int64(195681379)
kAB = 195681379
>> k=kAB
k = 195681379
>> kb=dec2bin(k)
kb = 10111010100 11101110001100011

>> m1=120000
m1 = 120000
>> m1b=dec2bin(m1)
m1b = 1 1101 0100 1100 0000
>> m2=9
m2 = 9
>> m2b=dec2bin(m2)
m2b = 1001

>> c1b=binaryxor(m1b,kb)
c1b = 101 1101 0100 0 0000 1000 1010 0011
>> c2b=binaryxor(m2b,kb)
c2b = 101110101001110111000110 1010
>> c12b=binaryxor(c1b,c2b)
c2b = 1011101010011101110001101010

>> c12b=binaryxor(c1b,c2b)
c12b = 11101010011001001
>> m12b=binaryxor(m1b,m2b)
m12b = 11101010011001001
>> db=c12b
db = 11101010011001001
>> mm1b=binaryxor(db,m2b)
mm1b = 1 1101 0100 1100 0000
>> mm1=bin2dec(mm1b)

 `111_008 SymmetricEncryption CBC CTR Page 4

Block cipher AES - 128, 192, 256 --> Encryption --> Decryption

Block Cipher: Electronic Code Book -ECB mode of encryption

From <https://binaryterms.com/block-cipher.html>

1. Electronic Code Book (ECB) mode in AES-128

This is considered to be the easiest block cipher mode of operation. In electronic codebook mode
(ECB) the plain text is divided into the blocks, each of 128-bit. Each block is encrypted one at a
time to produce the cipher block. The same key is used to encrypt each block.

When the receiver receives the message i.e. ciphertext. This ciphertext is again divided into blocks,
each of 128-bit and each block is decrypted independently one at a time to obtain the
corresponding plain text block. Here also the same key is used to decrypt each block which was
used to encrypt each block.

>> mm1=bin2dec(mm1b)
mm1 = 120000

 `111_008 SymmetricEncryption CBC CTR Page 5

https://binaryterms.com/block-cipher.html

https://binaryterms.com/block-cipher.html

2. Cipher Block Chaining - CBC Mode

To overcome the limitation of ECB i.e. the repeating block in plain text produces
the same ciphertext, a new technique was required which is Cipher Block
Chaining (CBC) Mode. CBC confirms that even if the plain text has repeating
blocks its encryption won’t produce same cipher block.

To achieve totally different cipher blocks for two same plain text
blocks chaining has been added to the block cipher. For this, the result
obtained from the encryption of the first plain text block is fed to the
encryption of the next plaintext box.

In this way, each ciphertext block obtained is dependent on its corresponding
current plain text block input and all the previous plain text blocks. But during
the encryption of first plain text block, no previous plain text block is available
so a random block of text is generated called Initialization vector.

Now let’s discuss the encryption steps of CBC

Step 1: The initialization vector and first plain text block are XORed and the
result of XOR is then encrypted using the key to obtain the first ciphertext
block.

Step 2: The first ciphertext block is fed to the encryption of the second plain
text block. For the encryption of second plain text block, first ciphertext block
and second plain text block is XORed and the result of XOR is encrypted using
the same key in step 1 to obtain the second ciphertext block.

Similarly, the result of encryption of second plain text block i.e. the second
ciphertext block is fed to the encryption of third plain text block to obtain third
ciphertext block. And the process continues to obtain all the ciphertext blocks.

Decryption Steps:

Step 1: The initialization vector is placed in the shift register. It is encrypted
using the same key.

Keep a note that even in the decryption process the encryption algorithm is
implemented instead of the decryption algorithm.

Then from the encrypted IV s bits are XORed with the s bits ciphertext C1 to
retrieve s bits plain text P1.

CBC

Cipher block
chaining

Encryption
parallelizable:

No

Decryption Yes

 `111_008 SymmetricEncryption CBC CTR Page 6

https://binaryterms.com/block-cipher.html

retrieve s bits plain text P1.

Step 2: The IV in the shift register is left-shifted by s bits and the s bits C1
replaces the rightmost s bits of IV.

The process continues until all plain text fragments are retrieved.

Decryption
parallelizable:

Yes

Random read
access:

Yes

https://binaryterms.com/block-cipher.html

5. Counter Mode - CTR

It is similar to OFB but there is no feedback mechanism in counter mode.
Nothing is being fed from the previous step to the next step instead it uses a
sequence of number which is termed as a counter which is input to the
encryption function along with the key. After a plain text block is encrypted the
counter value increments by 1.

Steps of encryption:

Step1: The counter value is encrypted using a key.

Step 2: The encrypted counter value is XORed with the plain text block to
obtain a ciphertext block.

To encrypt the next subsequent plain text block the counter value is
incremented by 1 and step 1 and 2 are repeated to obtain the corresponding
ciphertext.

The process continues until all plain text block is encrypted.

Steps for decryption:

Step1: The counter value is encrypted using a key.

Note: Encryption function is used in the decryption process. The same counter
values are used for decryption as used while encryption.

Step 2: The encrypted counter value is XORed with the ciphertext block to
obtain a plain text block.

CTR

Counter

Encryption
parallelizable:

Yes

Decryption
parallelizable:

Yes

Random read
access:

Yes

 `111_008 SymmetricEncryption CBC CTR Page 7

https://binaryterms.com/block-cipher.html

% AES128(in,kh32,NR,fun)
% Advanced Encryption Standard symmetric cipher with key length of 128 bits
% Encryption is performed for 1 block of length 128 bits or 16 ASCII symbols
%
% in - plaintext/ciphertext of string type: maximum 16 symbols or shorter
%
% kh32 - shared secret key in hexadecimal number of length=32 (128 bits)
% kh32 can be obtained when shared decimal key k is given using commands:
% >> k=int64(randi(2^28))
% k = 160966896
% >> kh32=dec2hex(k,32)
% kh32 = 000000000000000000000000099828F0
%
% NR - Number of Rounds (e.g. Nr = 10)
% The smaller NR, the lower security of encryption but the speed of encryption is higher
% The least number of NR is 1 and in this case security lack is evident
%
% fun - letter determining either encription: fun='e' or decryption: fun='d' functions
%
% Encryption example:
% >> in = 'Hello Bob';
% >> kh32 = '000000000000000000000000099828F0';
% >> NR = 10;
% >> Ch = AES128(in,kh32,NR,'e')
% ASCII_e = ?1 ~mV % ciphertext in ASCII format
% Ch = 0f9a2c08d191310fb27ed16d90f45686 % ciphertext in hexadecimal format
%
% Decryption example:
% >> Dh = AES128(Ch,kh32,NR,'d')
% Dh = 00000000000048656c6c6f7720426f62 % decrypted message in hex format
% D = Hello Bob % Decrypted message in ASCII format
%
function Out = AES128(in, key ,Nr, mode)

Encryption security depends of the number of rounds - NR
Test when NR=1
 NR=10
And compare ciphertexts in hex format.

 `111_008 SymmetricEncryption CBC CTR Page 8

Asymmetric cryptography main actors and their credentials.

Till this place

And compare ciphertexts in hex format.

 `111_008 SymmetricEncryption CBC CTR Page 9

The reader confusing implication and equivalence operations (functions) can accept the following
proposition as valid:
if talker has a head and donkey has a head, then talker is a donkey.
To accept this proposition as valid means that thinker confuses notions of implication and
equivalence. If reader is afraid to make such a mistake, we recommend to read about that in any
external source.

 `111_008 SymmetricEncryption CBC CTR Page 10

